1/290x+180=270x

Simple and best practice solution for 1/290x+180=270x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/290x+180=270x equation:



1/290x+180=270x
We move all terms to the left:
1/290x+180-(270x)=0
Domain of the equation: 290x!=0
x!=0/290
x!=0
x∈R
We add all the numbers together, and all the variables
-270x+1/290x+180=0
We multiply all the terms by the denominator
-270x*290x+180*290x+1=0
Wy multiply elements
-78300x^2+52200x+1=0
a = -78300; b = 52200; c = +1;
Δ = b2-4ac
Δ = 522002-4·(-78300)·1
Δ = 2725153200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2725153200}=\sqrt{3600*756987}=\sqrt{3600}*\sqrt{756987}=60\sqrt{756987}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52200)-60\sqrt{756987}}{2*-78300}=\frac{-52200-60\sqrt{756987}}{-156600} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52200)+60\sqrt{756987}}{2*-78300}=\frac{-52200+60\sqrt{756987}}{-156600} $

See similar equations:

| 2(x-5)+2=6x-4(3+x) | | −5(x+10)=−12 | | −8x-4=-7x+2 | | 24+13=5a | | x-21/3=25 | | p=-3p | | 10=v-2/6 | | x(X+9)=118 | | 8(y-9)+14=2y-50 | | 4x=4/1.5 | | 5y=-13y | | 3x−10=−10 | | j/4+16=17 | | 0.08(y-9)+14=0.02y-0.5 | | 2/3x=105 | | 4c+2/10=3 | | 12d+2–3d=5 | | 12z-9z=-8-7 | | (5y+8)-(7y+4)=8 | | 4x-30=-6x+20 | | 2/5y+2/3=1/5y+18/11 | | 4.9x²=45 | | 3p-6=7 | | 2(3w+6)/5=8 | | 4.9x2=45 | | 6u+34=8(u+4) | | 3(p+1)-(p-3)=4 | | 4x-11+4x=4(5x-4)+2 | | -(2x-12)=5x+7 | | 1.4x+2.6=1.7x+2.3 | | 2m-14=-8m+27 | | -7(x+1)=-5x+5 |

Equations solver categories