If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-8b^2=-33
We move all terms to the left:
1-8b^2-(-33)=0
We add all the numbers together, and all the variables
-8b^2+34=0
a = -8; b = 0; c = +34;
Δ = b2-4ac
Δ = 02-4·(-8)·34
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{17}}{2*-8}=\frac{0-8\sqrt{17}}{-16} =-\frac{8\sqrt{17}}{-16} =-\frac{\sqrt{17}}{-2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{17}}{2*-8}=\frac{0+8\sqrt{17}}{-16} =\frac{8\sqrt{17}}{-16} =\frac{\sqrt{17}}{-2} $
| 198=12x+30 | | 3p-9=4p+4 | | 7r2+5=166 | | (n-2)180=2(360)/n | | 5x+6(.95)=11.95 | | x=3+5/7 | | 900-c=90c= | | 7=7x-19 | | (4x+7)=(5x-4) | | 16=-8(4d-5) | | 7(3x+2)+5=-23 | | (6x-10)=(4x+5) | | -2=58n | | 3(-4m+3)=33 | | X^2+21x+11-x^2=0 | | 3x+32x-8=7(5x+6) | | 8x+6=3x+5 | | 42+7n=3n+90 | | 8x-5=-3x-9 | | 3p-50+50=180 | | 3x-53=-2(3x+4) | | 3x-4=729 | | 4t−1=11 | | -9z-3-4=22 | | 3(x+31)=39 | | 2=c/4−2 | | 4(y-2)y=2 | | 4h-9-6h=-20 | | 9n-4+n=56 | | 6=2z-10 | | (2x-12)=(9x-26)=(4x+43) | | (2x-36)+(x+6)=90 |