If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-(3x(x-1)-4x+)+3x=5x-(4x+5)
We move all terms to the left:
1-(3x(x-1)-4x+)+3x-(5x-(4x+5))=0
We add all the numbers together, and all the variables
3x-(3x(x-1)-4x+)-(5x-(4x+5))+1=0
We calculate terms in parentheses: -(3x(x-1)-4x+), so:
3x(x-1)-4x+
We add all the numbers together, and all the variables
-4x+3x(x-1)
We multiply parentheses
3x^2-4x-3x
We add all the numbers together, and all the variables
3x^2-7x
Back to the equation:
-(3x^2-7x)
We calculate terms in parentheses: -(5x-(4x+5)), so:We get rid of parentheses
5x-(4x+5)
We get rid of parentheses
5x-4x-5
We add all the numbers together, and all the variables
x-5
Back to the equation:
-(x-5)
-3x^2+3x+7x-x+5+1=0
We add all the numbers together, and all the variables
-3x^2+9x+6=0
a = -3; b = 9; c = +6;
Δ = b2-4ac
Δ = 92-4·(-3)·6
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{17}}{2*-3}=\frac{-9-3\sqrt{17}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{17}}{2*-3}=\frac{-9+3\sqrt{17}}{-6} $
| x/3-5/3-x/4-5/4=0 | | x+2/x^2+17x+30=0 | | 10x+14=10+4x | | 3(4x-2)=6-2x | | 54÷x=9 | | (x+5)+(x-5)+5x+x/5=5 | | 5x=53=3 | | x2+-40x=450 | | 20x-10-(5x(3x+1)-3x(6x-5))-5x(6x+1)=0 | | 10a-28=8a—14 | | 5x=-29-1 | | 8(8-4b)=128 | | 36/x=(20*x+1)/9 | | x/12=24/2 | | 6-2y=52 | | 10=(-19+15b) | | x²+23x+120=0 | | 180=140-x+40 | | 1.0 =0.4+y | | 4x2−18x+8=0. | | x/3+x=68 | | n+n+n+n=72 | | (x*5)/4=20 | | 24-10=7n | | 4x2−26x+12=0 | | (2x-1)(2x+1)-(x-3)(x+1)=18 | | 331-7=6n | | (x-28)*24=408 | | -7(4y-9)=63 | | 232*x+32=61 | | (v-3)(2v-3)=0 | | 4x2+6x+6=0 |