1+4/3x=4-2/5x

Simple and best practice solution for 1+4/3x=4-2/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+4/3x=4-2/5x equation:



1+4/3x=4-2/5x
We move all terms to the left:
1+4/3x-(4-2/5x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
4/3x-(-2/5x+4)+1=0
We get rid of parentheses
4/3x+2/5x-4+1=0
We calculate fractions
20x/15x^2+6x/15x^2-4+1=0
We add all the numbers together, and all the variables
20x/15x^2+6x/15x^2-3=0
We multiply all the terms by the denominator
20x+6x-3*15x^2=0
We add all the numbers together, and all the variables
26x-3*15x^2=0
Wy multiply elements
-45x^2+26x=0
a = -45; b = 26; c = 0;
Δ = b2-4ac
Δ = 262-4·(-45)·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{676}=26$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-26}{2*-45}=\frac{-52}{-90} =26/45 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+26}{2*-45}=\frac{0}{-90} =0 $

See similar equations:

| a(2+4)2+3=0 | | 4x/3+3/2=2x/3 | | 16a=8a | | 24x+18=21x-48 | | -5x-7=-8 | | 7x-27=10x | | x=- | | 7x-4=68 | | -3(3x-2)-(2x+3)=0 | | -3(3x-2)-(2+3)=0 | | 14x=6x-19 | | 4(x+28)-3(-x+28)=14 | | 5(x+8)+3(-x+6)=-10 | | 3x(x-3)=8x^2-12x | | 5x+75=2x+12 | | 2+2x+12=16 | | 0.4y-y=-3 | | (6p+5)=(5-6p) | | a*20+3=0 | | 3x(x-3)=9x^2-10x | | a(2+4)^2+3=0 | | 5x-4(4x-2)=-25 | | X-(X-2)=2x+4 | | 3(x+4)÷2=12 | | 11y−1=2y+89 | | (z²-2z)²-4=0 | | (z^2-2z)^2-4=0 | | x²-3x=10 | | 4m²+12m+5=0 | | 49x²-56x+1=0 | | 17(b+3b)=18+(4b-1) | | 2n(10n+5)=0 |

Equations solver categories