If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n(10n+5)=0
We multiply parentheses
20n^2+10n=0
a = 20; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·20·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*20}=\frac{-20}{40} =-1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*20}=\frac{0}{40} =0 $
| 4x+27/8x+45=7/13 | | -12(x-6)=3(x+64 | | P2-8p+12=0 | | -16(x-4)=4(x=36) | | F(x)=2*2-5x+2 | | A+(2×b)=23 | | A+2(l)=23 | | 4y2=7y | | F(x)=2*2-5+2 | | A+2(b)=23 | | (6x+4)(-3x+1)(9-4x)=0 | | 6x=x-23 | | 6x-11=8x | | 8xˆ2-10x=0 | | 4a+1=16-2a | | 4=5p-10 | | 8x+56=x+42 | | 12x-9=14x | | 8x+70=x-63 | | 10(x-7)=90 | | r+5=–3 | | 4+5p-5=34 | | 2h+3=25 | | 2x^2=(2x^2)-3x+12 | | -3t(2t-4)+2t=5t-4 | | 22x-6-13x+3=21x-6-12x+16 | | 3^a+^1=81 | | 3x+5/5-(5x-7/6)=(x-1/3) | | 2^x-2^3=120 | | (7x+4)/(4x+5)=8 | | -3(x-2)+3/10=3 | | 2^a=16 |