0=(3+7i)(3-i)

Simple and best practice solution for 0=(3+7i)(3-i) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(3+7i)(3-i) equation:



0=(3+7i)(3-i)
We move all terms to the left:
0-((3+7i)(3-i))=0
We add all the numbers together, and all the variables
-((7i+3)(-1i+3))+0=0
We add all the numbers together, and all the variables
-((7i+3)(-1i+3))=0
We multiply parentheses ..
-((-7i^2+21i-3i+9))=0
We calculate terms in parentheses: -((-7i^2+21i-3i+9)), so:
(-7i^2+21i-3i+9)
We get rid of parentheses
-7i^2+21i-3i+9
We add all the numbers together, and all the variables
-7i^2+18i+9
Back to the equation:
-(-7i^2+18i+9)
We get rid of parentheses
7i^2-18i-9=0
a = 7; b = -18; c = -9;
Δ = b2-4ac
Δ = -182-4·7·(-9)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-24}{2*7}=\frac{-6}{14} =-3/7 $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+24}{2*7}=\frac{42}{14} =3 $

See similar equations:

| 2(9*9)+8y=121.5 | | 8−2p=–p | | (9*9)-8y=121.5 | | (7*7)-8y=121.5 | | (6.36*6.36)-8y=121.5 | | 7a+5=3a+5 | | (16*16)-8y=121.5 | | (16^*16)-8y=121.5 | | c/4=7/10 | | 18b+15=14b–17 | | (7^2)-8y=121.5 | | x/20=24/96 | | (16^2)-8y=121.5 | | -11+2x+20=12+3x+-(x+10)+30 | | 25+.05m=40+.03m | | (6.36^2)8y=121.5 | | (9^2)8y=121.5 | | 4x+2(x-5)=3(x-4) | | m+1/7=4/9 | | x+3+7=x+5 | | X=19.25y | | 5/20=24/x | | 7/m+1=4/9 | | 2(7)+8y=121.5 | | 7m+1​=94 | | 2a+12=14 | | 23y+50+27y=50 | | -4y+6y=-3 | | -7{m-2}=8{3+m} | | 6x-15=6x+156x−15=6x+1 | | -3(2x5)-(4x+7)=2- | | 12x-30+8x-2=180 |

Equations solver categories