0.75k+7=1/8k+27

Simple and best practice solution for 0.75k+7=1/8k+27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.75k+7=1/8k+27 equation:



0.75k+7=1/8k+27
We move all terms to the left:
0.75k+7-(1/8k+27)=0
Domain of the equation: 8k+27)!=0
k∈R
We get rid of parentheses
0.75k-1/8k-27+7=0
We multiply all the terms by the denominator
(0.75k)*8k-27*8k+7*8k-1=0
We add all the numbers together, and all the variables
(+0.75k)*8k-27*8k+7*8k-1=0
We multiply parentheses
0k^2-27*8k+7*8k-1=0
Wy multiply elements
0k^2-216k+56k-1=0
We add all the numbers together, and all the variables
k^2-160k-1=0
a = 1; b = -160; c = -1;
Δ = b2-4ac
Δ = -1602-4·1·(-1)
Δ = 25604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25604}=\sqrt{4*6401}=\sqrt{4}*\sqrt{6401}=2\sqrt{6401}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-2\sqrt{6401}}{2*1}=\frac{160-2\sqrt{6401}}{2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+2\sqrt{6401}}{2*1}=\frac{160+2\sqrt{6401}}{2} $

See similar equations:

| -4(3x+1)-3(x+2)=35 | | 0.5(5x+16)-1.5(x-8)=-4 | | -4(3x-5=-16 | | .9x=95 | | 4y-16=y+11 | | 15=x/6-12 | | -9+25x=43 | | -8(y-5)=4y+4 | | n/77=-1 | | -4+c=-2 | | -17n=51 | | 34=5x21 | | 2n=-142 | | 149.50+15x=1000 | | 200+20x=1000 | | 230+10x=1000 | | .9x=125 | | 75+15x=1000 | | x*1.56*1.74=1400000 | | 3(2x-1)6x-1=5x | | 200+20x=150+30x | | 7x^=343 | | 27+13=q | | 11x+5=116 | | 5x-10+2x-5=180 | | x+177=180 | | X/9=25-x/18 | | 12+5(9+y)=6(11-y) | | 21a+3=17a+43 | | 21x+3=17x+43 | | 7(3+x)=3(7-x)+30 | | y/11-3=-10 |

Equations solver categories