If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.6x(2-9x)+1.1(5x-2)=0.5(3x-8)+0.2(15-7x)
We move all terms to the left:
0.6x(2-9x)+1.1(5x-2)-(0.5(3x-8)+0.2(15-7x))=0
We add all the numbers together, and all the variables
0.6x(-9x+2)+1.1(5x-2)-(0.5(3x-8)+0.2(-7x+15))=0
We multiply parentheses
0x^2+0x+5.5x-(0.5(3x-8)+0.2(-7x+15))-2.2=0
We calculate terms in parentheses: -(0.5(3x-8)+0.2(-7x+15)), so:We add all the numbers together, and all the variables
0.5(3x-8)+0.2(-7x+15)
We multiply parentheses
1.5x-1.4x-4+3
We add all the numbers together, and all the variables
0.1x-1
Back to the equation:
-(0.1x-1)
x^2+6.5x-(0.1x-1)-2.2=0
We get rid of parentheses
x^2+6.5x-0.1x+1-2.2=0
We add all the numbers together, and all the variables
x^2+6.4x-1.2=0
a = 1; b = 6.4; c = -1.2;
Δ = b2-4ac
Δ = 6.42-4·1·(-1.2)
Δ = 45.76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6.4)-\sqrt{45.76}}{2*1}=\frac{-6.4-\sqrt{45.76}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6.4)+\sqrt{45.76}}{2*1}=\frac{-6.4+\sqrt{45.76}}{2} $
| -3(4x+2)=-102 | | 40x=600 | | 27/63w-14/63=28/63w+9/63 | | 3-0.25x=-1/2x+8 | | F(5)-f(3)=10 | | (3x/10)+(3x/5)=9 | | 5x+35=-3x+-3 | | 2^2x-2^x-1=18 | | 12x-4=2(x+3)+10x | | -10(-5+x)=0 | | 1/2d=7/6 | | x÷(−2)=8. | | 5x+35=-3x+3 | | 2(4z+3)=32 | | -35=5(b-6) | | -25=11-9x | | 2u+7-5=-17 | | 7³/2x+3=28 | | 20−4x=−28 | | (x-8)^2/3=125 | | -5a+14+9a=3a-6a | | -2(-7y+6)-8y=2(y-2)-2 | | 5/3x+1/3x=4x+13/3+7/3x | | 5(r+9)-2(1-4)=1 | | 4y-1+y+37=8y+40-5y | | 5(m−3)=30 | | 3+16y-1=9y+44-7y | | 4n+3+2n-7=33 | | 5l-12=l+12 | | 180+x+3x+1.5=455 | | 8k+2=13+13 | | -3(v+2)=5v-8+2(5v+7) |