0.11x+0.7x(x-2)=0.01(4x-3)

Simple and best practice solution for 0.11x+0.7x(x-2)=0.01(4x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.11x+0.7x(x-2)=0.01(4x-3) equation:



0.11x+0.7x(x-2)=0.01(4x-3)
We move all terms to the left:
0.11x+0.7x(x-2)-(0.01(4x-3))=0
We multiply parentheses
0x^2+0.11x+0x-(0.01(4x-3))=0
We calculate terms in parentheses: -(0.01(4x-3)), so:
0.01(4x-3)
We multiply parentheses
0.04x-0.03
Back to the equation:
-(0.04x-0.03)
We add all the numbers together, and all the variables
x^2+1.11x-(0.04x-0.03)=0
We get rid of parentheses
x^2+1.11x-0.04x+0.03=0
We add all the numbers together, and all the variables
x^2+1.07x+0.03=0
a = 1; b = 1.07; c = +0.03;
Δ = b2-4ac
Δ = 1.072-4·1·0.03
Δ = 1.0249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.07)-\sqrt{1.0249}}{2*1}=\frac{-1.07-\sqrt{1.0249}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.07)+\sqrt{1.0249}}{2*1}=\frac{-1.07+\sqrt{1.0249}}{2} $

See similar equations:

| -(-1-2)=x | | x+0.05x=1912.05 | | x+x+666=1474 | | x/42x=1/3 | | (100+x)^4-7582200000=0 | | (5.49+3.99x)=4.99x | | 5×(3x-5)+7x=21 | | 21/3−x=12.3 | | 0.4x+0.25(128-x)=31 | | 15=12x-21 | | -9=3v-6 | | 972+17x=44x | | 3(-3-0.5y)+y=-8 | | 13x=2x^2+13x | | 13x=2x^2+13 | | 11-(15a-9)=0 | | (5x-8)^4+(5x-8)^3=0 | | -5=35x | | u/6-7=1 | | -8+4x=-3x-12 | | 3(x+4)+7=8(x-2) | | x=64/8(4*2) | | 12x-3=4x-35 | | 13x-19=12x-9 | | 4(4.32+-(1/3y))+3y=33.93 | | 10^-13=(10^14)(10^x) | | x/0.6=12/3 | | N+6n+7=27-2n | | 6x^2+29x-7=0 | | 6w=9w-1 | | -0.10(87)+0.65x=0.05(x-6) | | 4y+8+2y=10 |

Equations solver categories