If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9/5p+25/6p=1207/105
We move all terms to the left:
-9/5p+25/6p-(1207/105)=0
Domain of the equation: 5p!=0
p!=0/5
p!=0
p∈R
Domain of the equation: 6p!=0We add all the numbers together, and all the variables
p!=0/6
p!=0
p∈R
-9/5p+25/6p-(+1207/105)=0
We get rid of parentheses
-9/5p+25/6p-1207/105=0
We calculate fractions
(-217260p^2)/3150p^2+(-5670p)/3150p^2+13125p/3150p^2=0
We multiply all the terms by the denominator
(-217260p^2)+(-5670p)+13125p=0
We add all the numbers together, and all the variables
(-217260p^2)+13125p+(-5670p)=0
We get rid of parentheses
-217260p^2+13125p-5670p=0
We add all the numbers together, and all the variables
-217260p^2+7455p=0
a = -217260; b = 7455; c = 0;
Δ = b2-4ac
Δ = 74552-4·(-217260)·0
Δ = 55577025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{55577025}=7455$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7455)-7455}{2*-217260}=\frac{-14910}{-434520} =7/204 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7455)+7455}{2*-217260}=\frac{0}{-434520} =0 $
| -4.5g=-14.4-5.3g | | 2x^-6x÷4=0 | | 728=-13h | | --4x-7=-2x+5 | | 8(x−5)+13=8x−26 | | 3-19+8g=2+6g | | 3(x-2)+4=2x-2 | | 7(x−8)+43=7x−13 | | 9s-3-19s=-11s-19 | | 3-2(9=2m)-m | | 19j+14j=-15 | | 2/13+3n=4/5n+12 | | 2x-15=130 | | 3x+1+7x=2(5x+1) | | 9u=756 | | 12y=10y+94 | | 8(x-8)+28=8x-35 | | c/22=-5 | | 4y-44=-(y+3) | | 10y+6=7+9 | | 7(y-4)=5y-12 | | 4×(x+1)=3×(x-8) | | 1⁄2(x–6)=4 | | 9(x-7)+39=9x-24 | | 136=w-114 | | f/3+16=20 | | 13x^2-4x-8=12x^2-5x-2 | | 4(x)^1/2=16 | | 4(x)^.5=16 | | 6+9c=24 | | 3x-5/7+x+4=5x-7/14=5x-7x/14+x/2 | | -5(2x-15)=2(x-2)-41 |