If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2+3x+1=0
a = -8; b = 3; c = +1;
Δ = b2-4ac
Δ = 32-4·(-8)·1
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{41}}{2*-8}=\frac{-3-\sqrt{41}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{41}}{2*-8}=\frac{-3+\sqrt{41}}{-16} $
| 2q+11=–3 | | 2x-7=-23+4x | | 7x+-2=148 | | 0.75x+0.05(18-x)=0.10(51) | | 3x+10+3x+10+5x+6=180 | | 11+2q=–3 | | 3.2c+1.7=24 | | -+10-7=11x+15 | | 1.95(6.2-3x)-4.1=-18.46 | | 30-3x=15+2x | | 4+0.4a=8 | | S2+8s=5 | | x+10=-18+16 | | 169=-1+10(5+2k) | | (6^2)^x=1 | | 0.50n-12=-26 | | 0.20x+0.05(2-x)=0.10(-26) | | 3(w+5)=6(w+5)-2w | | x+10=13+6 | | 3x-5(2-x)=7(x+1)-(1-x) | | (5x-25)+(3x-9)=180 | | 3(3n+1)=-150 | | 3(k-6)=2(k-2) | | 8y-12-3y+2=-35 | | 0.25x-2=0.125x+10 | | 4(2x-5)=10(x+2) | | 12x+56=90 | | -3d+-9=-10 | | 5+14.75b=64 | | 7x-8+5x+5+75=180 | | 5m+3-2m+1=19 | | -12w+11=5w-14w-10 |