-8x(x-3)+4=-7(x-4)-x

Simple and best practice solution for -8x(x-3)+4=-7(x-4)-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8x(x-3)+4=-7(x-4)-x equation:



-8x(x-3)+4=-7(x-4)-x
We move all terms to the left:
-8x(x-3)+4-(-7(x-4)-x)=0
We multiply parentheses
-8x^2+24x-(-7(x-4)-x)+4=0
We calculate terms in parentheses: -(-7(x-4)-x), so:
-7(x-4)-x
We add all the numbers together, and all the variables
-1x-7(x-4)
We multiply parentheses
-1x-7x+28
We add all the numbers together, and all the variables
-8x+28
Back to the equation:
-(-8x+28)
We get rid of parentheses
-8x^2+24x+8x-28+4=0
We add all the numbers together, and all the variables
-8x^2+32x-24=0
a = -8; b = 32; c = -24;
Δ = b2-4ac
Δ = 322-4·(-8)·(-24)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16}{2*-8}=\frac{-48}{-16} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16}{2*-8}=\frac{-16}{-16} =1 $

See similar equations:

| 5x-3x+4=3•2 | | X+1/2x=114 | | -6-2(n-1)=-5-3n | | 10-4c=17 | | 68=1/5(20x+50+2 | | (15×2c)+(7c-5c)=93+c | | 9a-8-8a=-2+7 | | 4x6×=-11 | | 2/9x-1/3=x | | -8x(x-3)+4=-7x(x-4)-x | | 8(x+1)=-4(1-2x)+8 | | 3/10x=6/72 | | 5(x+2)+4=3(x+12) | | 3=-3x+21 | | 159=8+6y | | 1.06(12.25+x0=19.08 | | 17x+7=4(4x+2)-1 | | 4x6=-11 | | 171=-9d+9 | | 3a^2+19a-6=0 | | x+4/3=9 | | 3x+4x+6=9.2 | | 4x-3+2x-3=90 | | -5y+10y=30 | | -66+6x=34+11x | | (x-2)+(4x+7)=6x-3 | | .88=x+13(7) | | 4(2x+4)=11x+13-3x+3 | | 63=-7d+7 | | 5(2x+9)=5x+10 | | y/8-15=-15 | | C=32.50t+8.50 |

Equations solver categories