-8x(x-3)+4=-7x(x-4)-x

Simple and best practice solution for -8x(x-3)+4=-7x(x-4)-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8x(x-3)+4=-7x(x-4)-x equation:



-8x(x-3)+4=-7x(x-4)-x
We move all terms to the left:
-8x(x-3)+4-(-7x(x-4)-x)=0
We multiply parentheses
-8x^2+24x-(-7x(x-4)-x)+4=0
We calculate terms in parentheses: -(-7x(x-4)-x), so:
-7x(x-4)-x
We add all the numbers together, and all the variables
-1x-7x(x-4)
We multiply parentheses
-7x^2-1x+28x
We add all the numbers together, and all the variables
-7x^2+27x
Back to the equation:
-(-7x^2+27x)
We get rid of parentheses
-8x^2+7x^2-27x+24x+4=0
We add all the numbers together, and all the variables
-1x^2-3x+4=0
a = -1; b = -3; c = +4;
Δ = b2-4ac
Δ = -32-4·(-1)·4
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-5}{2*-1}=\frac{-2}{-2} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+5}{2*-1}=\frac{8}{-2} =-4 $

See similar equations:

| 8(x+1)=-4(1-2x)+8 | | 3/10x=6/72 | | 5(x+2)+4=3(x+12) | | 3=-3x+21 | | 159=8+6y | | 1.06(12.25+x0=19.08 | | 17x+7=4(4x+2)-1 | | 4x6=-11 | | 171=-9d+9 | | 3a^2+19a-6=0 | | x+4/3=9 | | 3x+4x+6=9.2 | | 4x-3+2x-3=90 | | -5y+10y=30 | | -66+6x=34+11x | | (x-2)+(4x+7)=6x-3 | | .88=x+13(7) | | 4(2x+4)=11x+13-3x+3 | | 63=-7d+7 | | 5(2x+9)=5x+10 | | y/8-15=-15 | | C=32.50t+8.50 | | 6a+7-5a=4 | | 24+9x=78 | | 3/7x+5=-4/7-2 | | Y=-3(x-5)-7 | | -8x-24+4=-7x-28-x | | 2.8f=-1.2f-10.8 | | (3x+5)=(5x-3) | | 10+4x=5x | | 6x-4=2(3x-2 | | 1/3x-5/3=7/6 |

Equations solver categories