-72+12=20z+8-1/3z

Simple and best practice solution for -72+12=20z+8-1/3z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -72+12=20z+8-1/3z equation:



-72+12=20z+8-1/3z
We move all terms to the left:
-72+12-(20z+8-1/3z)=0
Domain of the equation: 3z)!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
-(20z-1/3z+8)-72+12=0
We add all the numbers together, and all the variables
-(20z-1/3z+8)-60=0
We get rid of parentheses
-20z+1/3z-8-60=0
We multiply all the terms by the denominator
-20z*3z-8*3z-60*3z+1=0
Wy multiply elements
-60z^2-24z-180z+1=0
We add all the numbers together, and all the variables
-60z^2-204z+1=0
a = -60; b = -204; c = +1;
Δ = b2-4ac
Δ = -2042-4·(-60)·1
Δ = 41856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{41856}=\sqrt{64*654}=\sqrt{64}*\sqrt{654}=8\sqrt{654}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-204)-8\sqrt{654}}{2*-60}=\frac{204-8\sqrt{654}}{-120} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-204)+8\sqrt{654}}{2*-60}=\frac{204+8\sqrt{654}}{-120} $

See similar equations:

| -8+9q=-2+8q | | 5w=2=27* | | 3x+3=2(x-4) | | 310=-6.2=f | | x(x*4)=40 | | R(4x+5)=12x+15 | | 4x-7-(3x+7)=28 | | .913(1+x)^49=0.806 | | V(x)=x(40-2x)(30-2x | | -2-3f=-3-3f | | 4x+9=7x,+42 | | y=3/4(y+2) | | 4x+9=7x+42 | | 25x+8=37 | | -0.03x=-126 | | 5z-46=4z+1-3z+10/2 | | -10+5t=10+9t | | -0.03x=-126x= | | -4h-5=-4h | | 5.5=x+8 | | -2j-5(j+2)=-(3j-1) | | 2x-1/3x+1=1/4 | | 2x-1/3x+1=14 | | 3(x+2)x+2=18 | | 3(x+2)x+2​=18 | | 5−(−x)=−3 | | √(32(4))=x | | 7k=-8+6k | | 13.3=-3+x | | 1z+3=33 | | -6y=y-7y | | -9-6g=7g-6g+5 |

Equations solver categories