If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+20t+10=0
a = -5; b = 20; c = +10;
Δ = b2-4ac
Δ = 202-4·(-5)·10
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{6}}{2*-5}=\frac{-20-10\sqrt{6}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{6}}{2*-5}=\frac{-20+10\sqrt{6}}{-10} $
| 375-x=20 | | 2x+5/2=3/x | | 12x+(1-7x)=31 | | 4x+5x-9=27 | | 4h-32=60 | | h+7.1=−7.1 | | x*25=20 | | -8x+8=4x-40 | | c=10c-99 | | 32h+4=60 | | 10u-6u=32 | | 60=4h+32 | | 5*(x-5)=-1*x-37 | | 5(x+1)-5x=12(6x-7) | | 4h+60=32 | | 1/5(3x+4)=1/2(4x+2) | | 2.4=-t/1.5 | | 4y+(2-3y)=6 | | 32=c3 | | 3x-17=5x-41 | | 6{b-5}=12 | | -(3x-3)+(2-x)=16 | | 16x+12=32x+24 | | 6x−19=2(x−1)+11 | | –15=a/5 | | -6(-7x-6)=288 | | 3(x+4)-10=11 | | (6x-1)/(x+2)=0 | | -2(2x+3)-(3x+4)=9 | | 60=13x+2 | | 16x^2+36=-46x | | 3x/2+4×=22 |