-5n(4n-2)=-2(3+6n)

Simple and best practice solution for -5n(4n-2)=-2(3+6n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5n(4n-2)=-2(3+6n) equation:



-5n(4n-2)=-2(3+6n)
We move all terms to the left:
-5n(4n-2)-(-2(3+6n))=0
We add all the numbers together, and all the variables
-5n(4n-2)-(-2(6n+3))=0
We multiply parentheses
-20n^2+10n-(-2(6n+3))=0
We calculate terms in parentheses: -(-2(6n+3)), so:
-2(6n+3)
We multiply parentheses
-12n-6
Back to the equation:
-(-12n-6)
We get rid of parentheses
-20n^2+10n+12n+6=0
We add all the numbers together, and all the variables
-20n^2+22n+6=0
a = -20; b = 22; c = +6;
Δ = b2-4ac
Δ = 222-4·(-20)·6
Δ = 964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{964}=\sqrt{4*241}=\sqrt{4}*\sqrt{241}=2\sqrt{241}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{241}}{2*-20}=\frac{-22-2\sqrt{241}}{-40} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{241}}{2*-20}=\frac{-22+2\sqrt{241}}{-40} $

See similar equations:

| 14p+8=22+20p | | 17*6*a=1632 | | 3x+4-4=3x | | 113+(4x+6)+5x=540 | | (5y)+(y+3)+4y-1=82 | | 24*(20/b)=48 | | X²(x+5)=84 | | 200m-75m+62400=200 | | 12(3x+5)-7(2x-6)=2x-38 | | x-5x-1=9+2x-7 | | -10=-8-7x+5 | | 62x=15.5(92) | | -8w-8=-5(w-2) | | 41=z-35 | | X-4.9+.5x=x-0.4 | | HxB=A | | 15)f-16=56 | | -319+7x=-3x+121 | | -3(w+7)=8w+34 | | 3.2s=6.2 | | 29x-3(-56+12x)=78 | | 24x-71=27+22x | | 2x-1x+4.5=-2.9 | | -3(w+7)=8w=34 | | |7b-1|-10=-4 | | (2/3)x-(1/6)=(5/9) | | -2-(3x+1)=4x-3 | | 9x-154=14x+51 | | 26-5x=-39 | | X+(x.2)=90 | | 2/3x-1/6=5/9 | | F(5)=-x^2+6x-4 |

Equations solver categories