If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+9x=0
a = -4; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-4)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-4}=\frac{-18}{-8} =2+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-4}=\frac{0}{-8} =0 $
| -4+4x=-x-4 | | 47=4z-11 | | -102+2x-7x=48 | | 2y-18=56 | | 4+3x=9x+9 | | -7+x=-4x+1 | | (4y-1)(4+y)=0 | | 10r−8−11r=−12−r+4 | | 4/9+4(x-1)=28/9-(x-7x)+3 | | -29+10x=14x+39 | | -9(x+6)=8x+3 | | (-3x)-9=-15 | | 10x+8+5x+8=180 | | 16=a÷3 | | 10x^2-1+11x=0 | | (x(x-9))=1 | | -7+4x=-4+8x | | 6(x+3)=3x+4 | | (-3x)-9=(-15) | | 2x^-4/5=1 | | (x+9)=1 | | 3x2+7x=10 | | s=2200 | | 6(x+4)=10x+4 | | -6(2x+7)=5(3x-2) | | y=-56 | | -3x-6x=4x-7 | | -6=n-11 | | 7(w+2)=-2(6w-5)+3w | | 0=30.1735-4.9t^2+11t | | 7(w+2)=-2(6w-5) | | 7(x+7)=9x+4 |