If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+19.6t+58.8=0
a = -4.9; b = 19.6; c = +58.8;
Δ = b2-4ac
Δ = 19.62-4·(-4.9)·58.8
Δ = 1536.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19.6)-\sqrt{1536.64}}{2*-4.9}=\frac{-19.6-\sqrt{1536.64}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19.6)+\sqrt{1536.64}}{2*-4.9}=\frac{-19.6+\sqrt{1536.64}}{-9.8} $
| 8b+4=-2 | | -8.9p=-9p-1.95 | | .88x-8=216 | | 6+14-12c=56 | | 2x+(2/3)=2x+(4/5)-4x | | (x-3.5)/2=10.25 | | -16-10g=-13g+4+2g | | 10x+15=x-21 | | -15-4v=13-6v | | 4z=12+10z | | x2-10x-6000=0 | | (5x-4)(2x)=(x)(3x+6) | | x-3.5/2=10.25 | | 6.8m+9.55=-3.1m+12.07+10.1m | | 2c-9/10=5 | | 30=9x+7x= | | b×3=9 | | 24=x/(0.850-x) | | 10x+12=20x | | 3c+18=5c-4 | | 3x-2x-1=5 | | 17j-12=11+16j-15 | | 0.4x−4=0.05x+3 | | -147+10x=-2x+45 | | .3x-1.5=-18 | | 0.4x-7.9=9.1 | | 3(y-1)=2(y+3)+13 | | 8-3b-1=1 | | 7t=8t+19 | | 1-7x=-44 | | 10q+3q=7,13q=7,q=7/13 | | 30=1/2x |