If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3h(h-8)=0
We multiply parentheses
-3h^2+24h=0
a = -3; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·(-3)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*-3}=\frac{-48}{-6} =+8 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*-3}=\frac{0}{-6} =0 $
| v=3.21/3=-3.78 | | 5x-4(x-2)=14 | | 0.3x+0.76=0.2(3+3x) | | -12=4p-20 | | 1.8=x2 | | 4w-5.5=10.5 | | 2x+5=6x+19= | | 6.25=4.10+y | | 88+65+x+11+3x=360 | | x+53=x+31 | | 74+6a=180 | | (14)(x+11)=(16)(2x-5) | | 22/23=x/100 | | 8x+12=12x-36 | | 0.5x^2+4x+0.5=0 | | 5p+10=3p-7 | | 2(3)-11y=-7 | | 2^x=30000000000000 | | 8/5y=32 | | 3k-4k+7=4 | | x+0.15x=4800 | | 8x^2+16x-46=-4 | | 1/5-k=0.5 | | 2k/(20k-28)=4 | | 1=n2+2n+3 | | 1/4(12x-8)+5x=14 | | 1=n2+2n+ | | 2x+54=4x-9 | | T1=n2+2n+3 | | 5^x-10=34 | | 18=p/7 | | 40+110x+30=180 |