-3(2x-4)=3x(x-6)

Simple and best practice solution for -3(2x-4)=3x(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(2x-4)=3x(x-6) equation:



-3(2x-4)=3x(x-6)
We move all terms to the left:
-3(2x-4)-(3x(x-6))=0
We multiply parentheses
-6x-(3x(x-6))+12=0
We calculate terms in parentheses: -(3x(x-6)), so:
3x(x-6)
We multiply parentheses
3x^2-18x
Back to the equation:
-(3x^2-18x)
We get rid of parentheses
-3x^2-6x+18x+12=0
We add all the numbers together, and all the variables
-3x^2+12x+12=0
a = -3; b = 12; c = +12;
Δ = b2-4ac
Δ = 122-4·(-3)·12
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{2}}{2*-3}=\frac{-12-12\sqrt{2}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{2}}{2*-3}=\frac{-12+12\sqrt{2}}{-6} $

See similar equations:

| 3(x+1)-2(x-4)=2(x-1) | | 5x-80=120+x | | 13a–6a–7a–2a=10 | | 2x–3x+6x=35 | | 8x+5+3(4x-4)=5x-9 | | 2*(12x-4)-4*(5x+3)=0 | | 2x+10+3x+10=180 | | r/4=6/8 | | ​1.2x-0.8=1.6 | | x3-6x2+20x-12=0 | | 2(3a+6)=4(a-2) | | x-8=3x+4x+14 | | 2(3x+5)=3(2x-2) | | x3+-6x2+20x+-12=0 | | 7x-12-8-5x=-9-7 | | 7(x-2)+1=x-7 | | 2z=10(z-4) | | (x+4-10)(x+4-10)=0 | | 54xx=9 | | z=-16 | | X3+2x=50 | | 11=11=(2}{3}(8x+12)32​ (8x+12) | | r-7.6=4.5 | | 4(2+k)=5-2k | | F(x)=8x9 | | 70+2w=60 | | —2.8+4=x=5x–2.2 | | 5x+60=4x+10 | | .25x+x=140 | | 8.5=6.5(2d+3)+d | | 9p^2-7p+14=4 | | 6-5x+2x=24 |

Equations solver categories