-1/2a+12=5/6a-3

Simple and best practice solution for -1/2a+12=5/6a-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/2a+12=5/6a-3 equation:



-1/2a+12=5/6a-3
We move all terms to the left:
-1/2a+12-(5/6a-3)=0
Domain of the equation: 2a!=0
a!=0/2
a!=0
a∈R
Domain of the equation: 6a-3)!=0
a∈R
We get rid of parentheses
-1/2a-5/6a+3+12=0
We calculate fractions
(-6a)/12a^2+(-10a)/12a^2+3+12=0
We add all the numbers together, and all the variables
(-6a)/12a^2+(-10a)/12a^2+15=0
We multiply all the terms by the denominator
(-6a)+(-10a)+15*12a^2=0
Wy multiply elements
180a^2+(-6a)+(-10a)=0
We get rid of parentheses
180a^2-6a-10a=0
We add all the numbers together, and all the variables
180a^2-16a=0
a = 180; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·180·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*180}=\frac{0}{360} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*180}=\frac{32}{360} =4/45 $

See similar equations:

| 7(4n-1)=49 | | 8+2d=8 | | 12-2x+10=3x+2 | | (2.5x+1x)=(5x-3) | | 100q^2-4=0 | | 0.08(y-3)+0.16y=0.20y-0.4 | | 3(x+3)-6x=15 | | 2(4y+1)=3(7y-2) | | –5+2c=–5−7c | | 1/5(a+5)=1/2(3-a) | | 1(x+6)=0 | | 3x+7=13+6x | | 3(6-2x)=6(3x-8)-2x | | -3x-6=16-1x | | 1+8x=1-x | | 1/8(a+4)=1/5(9-a) | | 7i-(2-7i)=0 | | 5x-6=11x-42=160 | | -9(v-7)=-3v+3 | | 23+11c/7=5c | | 4x+1+x=42 | | (2x-5)(3x+8)=48 | | 39.51=8g+3.59 | | 6-5a=-9 | | -24=-4n-2n | | 3(2n+3)=63 | | -3(x+2)=16-1x | | 7n+19=-9 | | 7-x=-5=2x | | 4(3y-1)=57-11 | | 1/3x+7/4=-25/48 | | 25/12x=-25/48 |

Equations solver categories