-(4/5)x+14/5=x+2

Simple and best practice solution for -(4/5)x+14/5=x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(4/5)x+14/5=x+2 equation:



-(4/5)x+14/5=x+2
We move all terms to the left:
-(4/5)x+14/5-(x+2)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(+4/5)x-(x+2)+14/5=0
We multiply parentheses
-4x^2-(x+2)+14/5=0
We get rid of parentheses
-4x^2-x-2+14/5=0
We multiply all the terms by the denominator
-4x^2*5-x*5+14-2*5=0
We add all the numbers together, and all the variables
-4x^2*5-x*5+4=0
Wy multiply elements
-20x^2-5x+4=0
a = -20; b = -5; c = +4;
Δ = b2-4ac
Δ = -52-4·(-20)·4
Δ = 345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{345}}{2*-20}=\frac{5-\sqrt{345}}{-40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{345}}{2*-20}=\frac{5+\sqrt{345}}{-40} $

See similar equations:

| 13x-8/4x+1=2 | | 6x-x=4x | | 4p+5-7p=- | | 63=3v+12 | | -2(x-3)+7=30-3(x+4) | | x-2(2-3x)=9+5(3x-1) | | 5(x)+9=-43-8x | | 15(x/3-x/5)=15(3) | | 119+40+(4x)=180 | | 1250=x=1454 | | -4k2-8k-3=-3-5k2 | | 4(q+4)=18 | | 7r+3-2r=r+19 | | 3(2n-2)=9 | | 2(x-6)+5x=-5 | | (2y+21)=9y | | 40-4(x)=5-9(x) | | 7x+3=10x+4 | | 72x^2-9=0 | | 8(v+7)+5v=-9 | | x+3/5=-1/4 | | 7x-3=10x+4 | | 4(x)+9=-61-6x | | x−17=30 | | 12+13y=180 | | 14=-3u+8(u-2) | | 5x+5x=x-3+x-3 | | x-1454=1250 | | 10(2x-3)-7(4x-6)=2-6x | | 3d-24=6d | | 5=-2(x)+21 | | 8-(2a+7)=a=40 |

Equations solver categories