(y+3)(y-5)=2y-2,

Simple and best practice solution for (y+3)(y-5)=2y-2, equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (y+3)(y-5)=2y-2, equation:



(y+3)(y-5)=2y-2.
We move all terms to the left:
(y+3)(y-5)-(2y-2.)=0
We add all the numbers together, and all the variables
(y+3)(y-5)-(2y-2)=0
We get rid of parentheses
(y+3)(y-5)-2y+2=0
We multiply parentheses ..
(+y^2-5y+3y-15)-2y+2=0
We get rid of parentheses
y^2-5y+3y-2y-15+2=0
We add all the numbers together, and all the variables
y^2-4y-13=0
a = 1; b = -4; c = -13;
Δ = b2-4ac
Δ = -42-4·1·(-13)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{17}}{2*1}=\frac{4-2\sqrt{17}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{17}}{2*1}=\frac{4+2\sqrt{17}}{2} $

See similar equations:

| 2.91+x=39.39 | | 5(2x–5)–9x=36 | | 6(2x-3)=3x | | -4,5(3x+2)+1,6(5-4x)=3,1x+1,3 | | -4,5(3x+2)+1,6(5-4x)=3,1+1,3 | | (6-x)(5-x)=0 | | 4,5(3x+2)+1,6(5-4x)=3,1+1,3 | | 3.02+j=22.02 | | -4,5(3x-2)+1,6(5-4x)=3,1+1,3 | | 2=4m−10 | | x-75+55=180 | | (x)=6/√(5x^4) | | 4(3x+1)-8x=6+5x-2 | | X=6,y=-5 | | R=60-3n | | 6=x+2/7 | | x-8/3=1 | | 2.1x2+9x=4 | | 14z/4-26=8/4 | | √2.x–√50=0 | | Y+3y/8=4-y/12 | | 5/x=6/195 | | 96x-71/21=3x-4 | | 49z​−26=48−5z​ | | 4+1/2x=x-3 | | 4w+6w=12-8 | | 5/(x+1)²=x+6/2×5 | | 10(f-1)=20 | | 2a/3+7/3=3a-1/3 | | -y+19/15=2/5y | | 5.5*2c=8.9 | | 5(s-1)=20 |

Equations solver categories