(x/7)+(3x/4)=7(1/7)

Simple and best practice solution for (x/7)+(3x/4)=7(1/7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x/7)+(3x/4)=7(1/7) equation:



(x/7)+(3x/4)=7(1/7)
We move all terms to the left:
(x/7)+(3x/4)-(7(1/7))=0
We add all the numbers together, and all the variables
(+x/7)+(+3x/4)-(7(+1/7))=0
We get rid of parentheses
x/7+3x/4-(7(+1/7))=0
We calculate fractions
1029x^2/()+4x/()+()/()=0
We add all the numbers together, and all the variables
1029x^2/()+4x/()+1=0
We multiply all the terms by the denominator
1029x^2+4x+1*()=0
We add all the numbers together, and all the variables
1029x^2+4x=0
a = 1029; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·1029·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*1029}=\frac{-8}{2058} =-4/1029 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*1029}=\frac{0}{2058} =0 $

See similar equations:

| 9=x-4/x-12 | | 2x+(4x-15)+10=55 | | 81+b^2=324 | | 16x+18=3x-12 | | 81+b^2=256 | | -4(x+5)+3x+-1=-13 | | x2-36=28 | | (x+6)/5=13 | | 2x+x=14+x | | 1/4x-4=3-1/3x | | 4(4x+-4)+x+4=-46 | | 3/2t=−18 | | 1/4x-4=3-x1/3 | | (9x-8)(4x+3)=0 | | 20+x3=27 | | 42+15+.25x=45+.35x | | x9=153 | | y9=153 | | 253=-5(6v-5) | | 14x+26=90 | | x2+10=11 | | 2s+18=16-4(s+7) | | (x+6/5)=13 | | a^2+16=100 | | 3(c+2)=-5-2(c-3) | | 7(x+1)-5x=4+2x+3 | | 16+b^2=100 | | 5(m+2)-6+3m=3(3m+3)-m | | 5x-28=3x+20 | | -4d+11=-53 | | y+2.5=5.43 | | {z-1}{3}=6 |

Equations solver categories