(x-5)(x-2)=9x+13

Simple and best practice solution for (x-5)(x-2)=9x+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)(x-2)=9x+13 equation:



(x-5)(x-2)=9x+13
We move all terms to the left:
(x-5)(x-2)-(9x+13)=0
We get rid of parentheses
(x-5)(x-2)-9x-13=0
We multiply parentheses ..
(+x^2-2x-5x+10)-9x-13=0
We get rid of parentheses
x^2-2x-5x-9x+10-13=0
We add all the numbers together, and all the variables
x^2-16x-3=0
a = 1; b = -16; c = -3;
Δ = b2-4ac
Δ = -162-4·1·(-3)
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{67}}{2*1}=\frac{16-2\sqrt{67}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{67}}{2*1}=\frac{16+2\sqrt{67}}{2} $

See similar equations:

| 5x-7=45x+25 | | 2x+11+53x+8x=1,195 | | 2x+11+53x+8+x=1,195 | | x2+8=10x | | 11(x-2)-2(4-3x)-4(1-2x)=17(x-1)+7 | | 180=(x-30)+(x+76) | | c=-4/7 | | -4/7=c | | 2-9=5a | | -4(x+5)-2=-10 | | 5(u+7)-7u=25 | | 6x-28=2*(x+34) | | 5x-2(4-x)=29 | | 2(6x+1)=62 | | -15x+5-4(x-1)=-4x-(14x-3)+4 | | 450=9/5x+32 | | 3(x-5)+5=-1 | | 10=-2.7x^2+40x+6.5 | | X^2+2(x)^2=450 | | -x=-60/2 | | 8v=5v+18 | | 2x*(3x+5)=2600 | | 4/7x-1/7=3/42 | | 1/4x=130 | | 2x+30=6x+38 | | 1(-9z-1)+4=-3(3z+4)+6 | | 4x+3=8/x | | 19=x^2 | | −9=7−8v | | 4(20w+3)-8=-16(-5w-1)-21 | | -6t+(-7)=17 | | 4n+25+5n+29=180 |

Equations solver categories