If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+x+32)/2+(2/3)x=56
We move all terms to the left:
(x+x+32)/2+(2/3)x-(56)=0
Domain of the equation: 3)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(2x+32)/2+(+2/3)x-56=0
We multiply parentheses
2x^2+(2x+32)/2-56=0
We multiply all the terms by the denominator
2x^2*2+(2x+32)-56*2=0
We add all the numbers together, and all the variables
2x^2*2+(2x+32)-112=0
Wy multiply elements
4x^2+(2x+32)-112=0
We get rid of parentheses
4x^2+2x+32-112=0
We add all the numbers together, and all the variables
4x^2+2x-80=0
a = 4; b = 2; c = -80;
Δ = b2-4ac
Δ = 22-4·4·(-80)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{321}}{2*4}=\frac{-2-2\sqrt{321}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{321}}{2*4}=\frac{-2+2\sqrt{321}}{8} $
| 0=10x+70 | | 4x+140=360 | | 7x-5=x-11 | | t/4=2.4 | | -3(-6x+4)=-138 | | 3x+6=9x24 | | 6(-4-5n)=5n-24 | | 30+7x+10=180 | | (x+x+32)/2+2x/3=56 | | 30+7x10=180 | | y/2=3.5 | | -28-5n=-6n(n+5) | | -15+4x=8x-(x+3) | | (u-6)*10=40 | | 4y+5=4(y+4)-11 | | -2x+4=2x+0 | | 6y−14=8y+4 | | z+1=3.001 | | (e+3)×6=48 | | 2(2u-1)+6u+6=5(u+6)+3u | | 3.4a=58.8 | | 2(2+4a)=-8(a-2) | | 155w+10=230w-15 | | -10x-2=58+10x | | 103+-5x=73 | | 18x-1+6x+13=180 | | -11j+9=-2j+45 | | -6(8v-2)=4v-40 | | 3x+213=360 | | 3/5m-1/5=3/10 | | -3(k+1)-13=-2k+20 | | 8b=7+31 |