If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+5)(x+1)=42
We move all terms to the left:
(x+5)(x+1)-(42)=0
We multiply parentheses ..
(+x^2+x+5x+5)-42=0
We get rid of parentheses
x^2+x+5x+5-42=0
We add all the numbers together, and all the variables
x^2+6x-37=0
a = 1; b = 6; c = -37;
Δ = b2-4ac
Δ = 62-4·1·(-37)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{46}}{2*1}=\frac{-6-2\sqrt{46}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{46}}{2*1}=\frac{-6+2\sqrt{46}}{2} $
| 5(2x+2)=5x-15 | | 0,15x+1,6=3,1 | | x^=42x+184 | | 2(1+6p)=26 | | b=16/4−b= | | 32-x=74 | | p=4/p+9= | | 0.333(6z+7.2)=0.5(8z+2)-0.4 | | 2+1/2x=1/4x=6 | | 20+5x=3x=10 | | x+4=5=2x | | X^3+x^2+15x=84^3 | | 1/6y+13=27-½y | | X^3+x+^2+15x=84^3 | | -12(12v-20)+4=-12-8v | | 9+4x=−15 | | -1/2^(12v-20)+4=12-8v | | -175=-7(5-4y) | | 20=x=5 | | 20=5x=-11 | | 10x+14=120 | | (n-2)(n+2)=n^2 | | 1x/4-1=7 | | 3/n=12/36 | | 7x+5=240 | | 34=17(x/4) | | 16-8y=48 | | 2n+3n+4n=63 | | 10=7−x | | 2m/9=8 | | 10x-7x=10-5 | | 3x2+10x=32 |