If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x=32
We move all terms to the left:
3x^2+10x-(32)=0
a = 3; b = 10; c = -32;
Δ = b2-4ac
Δ = 102-4·3·(-32)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-22}{2*3}=\frac{-32}{6} =-5+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+22}{2*3}=\frac{12}{6} =2 $
| 7y+9+2y^2=360 | | 2.5x+1.5=2x+4 | | 5/2x+1/2x=9+8/2x | | 49^(x+1)+7^(2x)=350 | | 3.9=18x+4.9x^2 | | 5^a-3=1/5 | | 4n-12=23 | | 5a-3=1/5 | | (2x-50)+13=180 | | (2x-50)+13+x=180 | | 22x+100=25x=70 | | 6m-5=0.5m | | 8=4^x | | 7^t=1/2401 | | 7/10w-18=26/1w | | 7/10w-18=26w | | 7/10w-18=1w | | 2xX3=24 | | -2x-1-8=7 | | 6.9x+5=23 | | x/3+x/4=x/5 | | 18/(3-r)=18 | | 27.6=b/9 | | 89.3=b/4 | | 16y′′−40y′+25y=0 | | 4x+6=20-x | | 5+3x+x=21 | | -1x-94=136 | | 94+x=136 | | x-0.18x-0.15x=15,000 | | 3x²=180 | | 6x–2=34–x |