If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+2)/14=(6/7)+(x-4)-3
We move all terms to the left:
(x+2)/14-((6/7)+(x-4)-3)=0
Domain of the equation: 7)+(x-4)-3)!=0We add all the numbers together, and all the variables
x∈R
(x+2)/14-((+6/7)+(x-4)-3)=0
We calculate fractions
((x+2)*7)+x/98x+()/98x=0
We calculate terms in parentheses: +((x+2)*7), so:We get rid of parentheses
(x+2)*7
We multiply parentheses
7x+14
Back to the equation:
+(7x+14)
7x+x/98x+()/98x+14=0
We multiply all the terms by the denominator
7x*98x+x+14*98x+()=0
We add all the numbers together, and all the variables
x+7x*98x+14*98x=0
Wy multiply elements
686x^2+x+1372x=0
We add all the numbers together, and all the variables
686x^2+1373x=0
a = 686; b = 1373; c = 0;
Δ = b2-4ac
Δ = 13732-4·686·0
Δ = 1885129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1885129}=1373$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1373)-1373}{2*686}=\frac{-2746}{1372} =-2+1/686 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1373)+1373}{2*686}=\frac{0}{1372} =0 $
| (x+2)/14=(6/7)+((x-4)/3) | | 11-5x/10=7 | | 15x+10=5x(x+1) | | 3+5m=22 | | 182368.2=r^2-4r | | p-1/3=3/4 | | 12=5(x-4)-(x-8) | | (136*3.14)^2=r^2-4r | | 4-6x/9=10 | | .50b=150 | | 11x+3=8x(x+4) | | 7x-8=3x-23 | | 0.9+w=3.86 | | 7x-8=4x-23 | | y/11=8 | | 36x(2x+1)=10800 | | 0.25y^2+0.25y+0.5=8 | | 4k(2k+3)=2k(3k+2) | | 36x(2x+1)=10,800 | | (2b+6)+b=90 | | 5(x+35)=11x | | 0.3x(1-x/1000)=70 | | 2=1.03^(2x) | | 4(c-3)+6=10 | | 8x+12=-3x-20 | | 81=105-(5.00+x+7.50) | | (x+1)-(x-1)=6x(x-3) | | 3x^-12x-13=4 | | 36-9x=x^2 | | 5x^+12x+79=3x+72 | | |x-32|=4.7 | | 2.5+0.15p=0.4 |