(x+1)(x+1)=16+8x

Simple and best practice solution for (x+1)(x+1)=16+8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+1)=16+8x equation:



(x+1)(x+1)=16+8x
We move all terms to the left:
(x+1)(x+1)-(16+8x)=0
We add all the numbers together, and all the variables
(x+1)(x+1)-(8x+16)=0
We get rid of parentheses
(x+1)(x+1)-8x-16=0
We multiply parentheses ..
(+x^2+x+x+1)-8x-16=0
We get rid of parentheses
x^2+x+x-8x+1-16=0
We add all the numbers together, and all the variables
x^2-6x-15=0
a = 1; b = -6; c = -15;
Δ = b2-4ac
Δ = -62-4·1·(-15)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{6}}{2*1}=\frac{6-4\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{6}}{2*1}=\frac{6+4\sqrt{6}}{2} $

See similar equations:

| 27=v/5-11 | | 5.6g+2=3.6g+12 | | 3-2x+2=14 | | 10-4x-2=4x-6 | | X=4.25+y | | 7n-10=-25 | | 2b÷9=16 | | (x(5x+1)+2(5x+3))/2=3 | | -7(6x-1)=-287 | | 4*x=63 | | 1/2x+10=x+5 | | 7/8−(x+5 12)=5/24 | | 6+2y-4=2 | | (21x-3)/4-(4x-1-x)/2=x+5/2 | | 5^(5x)=25 | | 4x+20=1.40 | | -8+m=-12 | | 2x-2x+1=5-2x | | 5(-10+3x)=70 | | 12+a=15 | | F(x)=4x+3/5x-3 | | 2w^2-7w-85=0 | | 2w^2-5w-133=0 | | x÷9+2÷3=5÷6+x÷3 | | x/9+2/3=5/6+x/3 | | (1+5x/100)*(1-4x/100)=0 | | +8x=-8 | | 2x-9x+90=4x+35 | | Z(4x+9)x(6x-23)=180 | | 4(y-2)=3(2y+12) | | 2c=7.5=6.2=3c | | (100+5x)*(100-4x)=0 |

Equations solver categories