(x+1)(x+1)=(-6x+10)(-6x+10)

Simple and best practice solution for (x+1)(x+1)=(-6x+10)(-6x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+1)=(-6x+10)(-6x+10) equation:



(x+1)(x+1)=(-6x+10)(-6x+10)
We move all terms to the left:
(x+1)(x+1)-((-6x+10)(-6x+10))=0
We multiply parentheses ..
(+x^2+x+x+1)-((-6x+10)(-6x+10))=0
We calculate terms in parentheses: -((-6x+10)(-6x+10)), so:
(-6x+10)(-6x+10)
We multiply parentheses ..
(+36x^2-60x-60x+100)
We get rid of parentheses
36x^2-60x-60x+100
We add all the numbers together, and all the variables
36x^2-120x+100
Back to the equation:
-(36x^2-120x+100)
We get rid of parentheses
x^2-36x^2+x+x+120x+1-100=0
We add all the numbers together, and all the variables
-35x^2+122x-99=0
a = -35; b = 122; c = -99;
Δ = b2-4ac
Δ = 1222-4·(-35)·(-99)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(122)-32}{2*-35}=\frac{-154}{-70} =2+1/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(122)+32}{2*-35}=\frac{-90}{-70} =1+2/7 $

See similar equations:

| -5(4y-3)=3(1-8y)+15 | | 4-(2x+)=5 | | 9-(2n-2)=8-3n | | 5x^2+6x-56=0 | | 3m^2+2m+7=0 | | x-55=77 | | 2(t-2)+9=-13 | | 15x-2=0 | | f(1)=6/2*1-3 | | -9(3a-15)=0 | | 6x^2-72x-798=0 | | -27=3(2x+1) | | 1/6d=52 | | -27=3(2x+1 | | f(1)=6/2(1)-3 | | 3v=-25 | | 9x-3/x=3 | | 2t²-7t-49=0 | | 3.22x+28.98=57.96 | | (5x^2+6x-4)=0 | | 11x^2-16x-91=0 | | (5x^2+6x+4)=0 | | K²-4k-45=0 | | (5x^2+6x)^(1/3)=2 | | 15+2×2-15=x | | 7(5x-3)=4x-12 | | -5(6x-7)+4=-30x+39 | | (V^2)+3v=-2 | | 2(x+4)+4=-6 | | -37x^2+-232x+-720=0 | | 2+(3-2x)=19 | | |f−6|=|f+8| |

Equations solver categories