(t+1)(t)=5t+7

Simple and best practice solution for (t+1)(t)=5t+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (t+1)(t)=5t+7 equation:



(t+1)(t)=5t+7
We move all terms to the left:
(t+1)(t)-(5t+7)=0
We multiply parentheses
t^2+t-(5t+7)=0
We get rid of parentheses
t^2+t-5t-7=0
We add all the numbers together, and all the variables
t^2-4t-7=0
a = 1; b = -4; c = -7;
Δ = b2-4ac
Δ = -42-4·1·(-7)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{11}}{2*1}=\frac{4-2\sqrt{11}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{11}}{2*1}=\frac{4+2\sqrt{11}}{2} $

See similar equations:

| 162=30-w | | 28=8+x/4 | | (8x+27)+(6x-21)=180 | | 52+20x=10+30x | | (t-1)=5t+7 | | 61=9(n-1)4 | | 9+x=-53 | | 9+x=x+3 | | (x-590)/26=1.226 | | 4h=2h=6=10 | | –3(d+10)=15 | | 2/3(12x-15)=3x-5(2-x) | | 12z-42=24+18z | | -28=16+4n+4 | | a+5.7=2.3 | | (x-8.5)/2.2=-1.75 | | 0.15x=40+0.05x | | 2m2+3m-14=0 | | 10x+40=15x+20 | | 23-25x=7-9 | | 4x+17=12x+23 | | 36x=4(20x+13) | | V+5v=36 | | -3/z-1=1-7z | | -11=4+5u | | 3x−5=7x+3 | | 5x-0.2=4.2 | | 14+3x=8x–3(x–4) | | xx12xx=180 | | 1−2x=3x−9 | | ?x12x?=180 | | x^2-17x^2=0 |

Equations solver categories