If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+3m-14=0
a = 2; b = 3; c = -14;
Δ = b2-4ac
Δ = 32-4·2·(-14)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11}{2*2}=\frac{-14}{4} =-3+1/2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11}{2*2}=\frac{8}{4} =2 $
| 10x+40=15x+20 | | 23-25x=7-9 | | 4x+17=12x+23 | | 36x=4(20x+13) | | V+5v=36 | | -3/z-1=1-7z | | -11=4+5u | | 3x−5=7x+3 | | 5x-0.2=4.2 | | 14+3x=8x–3(x–4) | | xx12xx=180 | | 1−2x=3x−9 | | ?x12x?=180 | | x^2-17x^2=0 | | 1.5x-100+2.5x=100 | | (2x-10)+(x-2)=180 | | (3x)+3=10 | | 0.5=m/35 | | -4(3x+12)=10(-11x+3) | | 40+15*0,25x=45*0,35x | | 2x-10=1/3(x-4) | | 2x=(5x-4)+x | | 4²+5c-2=0 | | 8q+2q=20 | | -15q+11q=-4 | | 2(2x+2)+2(4-5x)=72 | | 3(2x-4)+5=7x-8x+9+5 | | (2x-1)=3(x-5)=-2(2x+1) | | 8w+12=4(3+2w) | | -7x-5x-2x=42 | | 5x-3=3+4x | | 42x+18x^2=0 |