-3/z-1=1-7z

Simple and best practice solution for -3/z-1=1-7z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/z-1=1-7z equation:



-3/z-1=1-7z
We move all terms to the left:
-3/z-1-(1-7z)=0
Domain of the equation: z!=0
z∈R
We add all the numbers together, and all the variables
-3/z-(-7z+1)-1=0
We get rid of parentheses
-3/z+7z-1-1=0
We multiply all the terms by the denominator
7z*z-1*z-1*z-3=0
We add all the numbers together, and all the variables
-2z+7z*z-3=0
Wy multiply elements
7z^2-2z-3=0
a = 7; b = -2; c = -3;
Δ = b2-4ac
Δ = -22-4·7·(-3)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{22}}{2*7}=\frac{2-2\sqrt{22}}{14} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{22}}{2*7}=\frac{2+2\sqrt{22}}{14} $

See similar equations:

| -11=4+5u | | 3x−5=7x+3 | | 5x-0.2=4.2 | | 14+3x=8x–3(x–4) | | xx12xx=180 | | 1−2x=3x−9 | | ?x12x?=180 | | x^2-17x^2=0 | | 1.5x-100+2.5x=100 | | (2x-10)+(x-2)=180 | | (3x)+3=10 | | 0.5=m/35 | | -4(3x+12)=10(-11x+3) | | 40+15*0,25x=45*0,35x | | 2x-10=1/3(x-4) | | 2x=(5x-4)+x | | 4²+5c-2=0 | | 8q+2q=20 | | -15q+11q=-4 | | 2(2x+2)+2(4-5x)=72 | | 3(2x-4)+5=7x-8x+9+5 | | (2x-1)=3(x-5)=-2(2x+1) | | 8w+12=4(3+2w) | | -7x-5x-2x=42 | | 5x-3=3+4x | | 42x+18x^2=0 | | 40+15+0,25x=45+0,35x | | √(3y-1)^2=√0 | | x^2+2x-11=-3 | | 10g=750 | | -5(2+x)=35 | | z+331=505 |

Equations solver categories