(a+3)(0+7)=a(a+3)-7

Simple and best practice solution for (a+3)(0+7)=a(a+3)-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (a+3)(0+7)=a(a+3)-7 equation:



(a+3)(0+7)=a(a+3)-7
We move all terms to the left:
(a+3)(0+7)-(a(a+3)-7)=0
We add all the numbers together, and all the variables
(a+3)7-(a(a+3)-7)=0
We multiply parentheses
7a-(a(a+3)-7)+21=0
We calculate terms in parentheses: -(a(a+3)-7), so:
a(a+3)-7
We multiply parentheses
a^2+3a-7
Back to the equation:
-(a^2+3a-7)
We get rid of parentheses
-a^2+7a-3a+7+21=0
We add all the numbers together, and all the variables
-1a^2+4a+28=0
a = -1; b = 4; c = +28;
Δ = b2-4ac
Δ = 42-4·(-1)·28
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{2}}{2*-1}=\frac{-4-8\sqrt{2}}{-2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{2}}{2*-1}=\frac{-4+8\sqrt{2}}{-2} $

See similar equations:

| 1/8(7t-9)=1/16(t+9) | | -4,5+5y=18 | | -8=-4,5y+2,5 | | 1/3(6p–9)=–2p+13 | | x=10-3/x | | 2y+0,2=-1,4 | | x^{6}=8+2x^{3} | | 9p2-8p+1=0 | | x=-7/5-9/8 | | 15x+3=5x+13 | | X*y=75 | | 2=0,05x-3,7 | | 3x+6=(-2x-6)-5 | | -4,5x-8=7 | | X+1/2y=4 | | 8x+14=27 | | 6(w-1)-2=-2(-9w+1)-2w | | -25=3(c-2)-3c | | 2.7×100=x | | 12x-7x=150 | | 4-x/2x-1+5=4/3x | | 2x^-12x-5=0 | | (V/7)+8v=19 | | 6x+6+30x=5x | | 8x-10=10x+2 | | 4/10x-3+6/5=4/5 | | 128=(4^2x)*(2^x) | | 128=4^{2x}*2^x | | 6x+x=4x+99 | | 7x-45=4x+90 | | 34x-x^2=120 | | X^2+z+40=0 |

Equations solver categories