(8x-3)(2x-5)=(4x-7)

Simple and best practice solution for (8x-3)(2x-5)=(4x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x-3)(2x-5)=(4x-7) equation:



(8x-3)(2x-5)=(4x-7)
We move all terms to the left:
(8x-3)(2x-5)-((4x-7))=0
We multiply parentheses ..
(+16x^2-40x-6x+15)-((4x-7))=0
We calculate terms in parentheses: -((4x-7)), so:
(4x-7)
We get rid of parentheses
4x-7
Back to the equation:
-(4x-7)
We get rid of parentheses
16x^2-40x-6x-4x+15+7=0
We add all the numbers together, and all the variables
16x^2-50x+22=0
a = 16; b = -50; c = +22;
Δ = b2-4ac
Δ = -502-4·16·22
Δ = 1092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1092}=\sqrt{4*273}=\sqrt{4}*\sqrt{273}=2\sqrt{273}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{273}}{2*16}=\frac{50-2\sqrt{273}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{273}}{2*16}=\frac{50+2\sqrt{273}}{32} $

See similar equations:

| 2(x-4)=3(2+x) | | 6x(2x-5)+21=(4x-1)(3x+7) | | 2+6x=2(2x-1) | | 1-x/8=-7 | | -5=-x/2-1 | | 90+6x+15=180 | | 4x/5-1/5=1 | | 3(2x+5)+4(3x-7)=5(4x+1) | | 12-x/3=18 | | -5y=-19y | | 3(2x-3)-4(3x+2)=4x-12 | | 6t^2-27=0 | | 4x+9x=8+10x+7 | | j−11=16 | | s+21=57 | | q+71=89 | | d+1=99 | | 2x+5(x-9)=16-4(x-5) | | 1/3-8+n=-13 | | y=50(3)^X | | 15+6v=-3(v-5) | | 3(x–2)–2(x+1)=5 | | (5)/(2)-3x-5+4x=-(7)/(4) | | 2+4x=28;x= | | 7c2c−3=2(6−c)+7c | | 4X^3+x^2-13x-10=0 | | 2.6+10m=6.54 | | 10-d=-34-59 | | -54=-8p+10. | | 2(x-35)=27 | | 4+16=-2(7x-10) | | -4x=5-5x |

Equations solver categories