(7)/(8)b-32=(3)/(4)b+22

Simple and best practice solution for (7)/(8)b-32=(3)/(4)b+22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7)/(8)b-32=(3)/(4)b+22 equation:



(7)/(8)b-32=(3)/(4)b+22
We move all terms to the left:
(7)/(8)b-32-((3)/(4)b+22)=0
Domain of the equation: 8b!=0
b!=0/8
b!=0
b∈R
Domain of the equation: 4b+22)!=0
b∈R
We get rid of parentheses
7/8b-3/4b-22-32=0
We calculate fractions
28b/32b^2+(-24b)/32b^2-22-32=0
We add all the numbers together, and all the variables
28b/32b^2+(-24b)/32b^2-54=0
We multiply all the terms by the denominator
28b+(-24b)-54*32b^2=0
Wy multiply elements
-1728b^2+28b+(-24b)=0
We get rid of parentheses
-1728b^2+28b-24b=0
We add all the numbers together, and all the variables
-1728b^2+4b=0
a = -1728; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-1728)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-1728}=\frac{-8}{-3456} =1/432 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-1728}=\frac{0}{-3456} =0 $

See similar equations:

| 3(2x−3)+x+4=-27 | | 35000=10000+0.1x | | 2x-8+60=180 | | 78=3vv= | | e/4-3=5 | | 4v-9/7=-3 | | X=24x-25=75 | | 10x+2=7x-11 | | 7b/6=b-1/6 | | k+–16=58 | | -1/2=n/6 | | 1/m-1/4=0( | | –4j+80j–41j–77j+30=72 | | 2x+6/3=12 | | (2x3)5+11=x | | 1/4b-6=-4 | | 36=38-v | | 4(v-1)=4v+2-4(-2v-1) | | (3y-51)(3y-9)=180 | | (-18)=10x-10 | | -3x-(7x+4)=-4(3x+1) | | 6a-5=2a/2 | | -2(6u-4)+6u=6+2(6u-7) | | 30=-12(p-6) | | 0.5y-14=26 | | 8/x=-4/7 | | 4-(-x-1)+2x=x+9 | | -6(u+2)=2u-4+2(5u+4) | | R(x)=x³+6 | | 4-(-x-1)+2x=x | | 4-(-x-1)+2x=x | | 4-(-x-1)+2x=x |

Equations solver categories