If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6x+16.8)2x=90
We move all terms to the left:
(6x+16.8)2x-(90)=0
We multiply parentheses
12x^2+33.6x-90=0
a = 12; b = 33.6; c = -90;
Δ = b2-4ac
Δ = 33.62-4·12·(-90)
Δ = 5448.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33.6)-\sqrt{5448.96}}{2*12}=\frac{-33.6-\sqrt{5448.96}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33.6)+\sqrt{5448.96}}{2*12}=\frac{-33.6+\sqrt{5448.96}}{24} $
| 14x+72=-152 | | X5-81x=0 | | 7x-31=-157 | | 3x-24+3=3 | | 8.2(x–7)=–24.6 | | X×y=-238 | | x÷-7-1=2 | | 66+8x=180 | | 8x-2(x-4)=4(x-2)+10 | | -100=9x+98 | | 25=5x-54 | | -102=49-15x | | -223=8x-87 | | 6u+2=7 | | 9+t|12=-3 | | 6p=144 | | 6u+1=7 | | 65+90+5x=108 | | -103=-13x+131 | | 4x-14=111 | | 7p=196 | | 27=u/5-15 | | 6x-124=100+14x | | r/3+7/5=-3 | | (x+0.3)(x+0.3)=0.16 | | (x+3)2=0.16 | | 1/7x3/4=9/8 | | (3^y)+(3^y+2)=90 | | 2/3/d=4/5 | | 16x-4+9x+12+72=180 | | 4/5+1/4=c | | 18=-6+4u |