(68/14)x=63/14

Simple and best practice solution for (68/14)x=63/14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (68/14)x=63/14 equation:



(68/14)x=63/14
We move all terms to the left:
(68/14)x-(63/14)=0
Domain of the equation: 14)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+68/14)x-(+63/14)=0
We multiply parentheses
68x^2-(+63/14)=0
We get rid of parentheses
68x^2-63/14=0
We multiply all the terms by the denominator
68x^2*14-63=0
Wy multiply elements
952x^2-63=0
a = 952; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·952·(-63)
Δ = 239904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{239904}=\sqrt{7056*34}=\sqrt{7056}*\sqrt{34}=84\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84\sqrt{34}}{2*952}=\frac{0-84\sqrt{34}}{1904} =-\frac{84\sqrt{34}}{1904} =-\frac{3\sqrt{34}}{68} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84\sqrt{34}}{2*952}=\frac{0+84\sqrt{34}}{1904} =\frac{84\sqrt{34}}{1904} =\frac{3\sqrt{34}}{68} $

See similar equations:

| 2(n-8)+4n=-2+2(-10-3n) | | 10(x+4)=8-(x+2) | | -11.85+12.9s-17.2s=-4.83-3.4s | | 25x+44=27x+18-3x | | -m+17=-(m-3) | | 90=4x-1+3x+7 | | -4(x-2)=-7x+20 | | -7-4(-4-6a)=143 | | v=25-4v | | -4(x-2)=-7+20 | | -2x+6+4x=2 | | 4m-18m+9=17m | | 10x-4+9x=5x+9 | | 4+v/10=-1 | | 7(x-1)+4=2x+5(-1+x) | | 9x-4+9x=5x+9 | | 15x-35=12x+18 | | 26=5+3u | | 5x-4+9x=5x+9 | | 0.45+7.1j=6.8j | | 5a+4-1=3 | | 4(x-2)/8=2(x+2/8 | | 89*52-864+x=433 | | 14x+25x/3=4 | | -7g−6=-9g | | 3x4=4x3 | | -4+n/1=0 | | x(8x-59)=-21 | | -4=z-8/6 | | 2x+8+3=8 | | 5x=x=33 | | x^2+3-x=x^2+10x-7 |

Equations solver categories