If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x-7)-(2x+3)/6x+11=8/3
We move all terms to the left:
(5x-7)-(2x+3)/6x+11-(8/3)=0
Domain of the equation: 6x!=0We add all the numbers together, and all the variables
x!=0/6
x!=0
x∈R
(5x-7)-(2x+3)/6x+11-(+8/3)=0
We get rid of parentheses
5x-(2x+3)/6x-7+11-8/3=0
We calculate fractions
5x+(-6x-9)/18x+(-48x)/18x-7+11=0
We add all the numbers together, and all the variables
5x+(-6x-9)/18x+(-48x)/18x+4=0
We multiply all the terms by the denominator
5x*18x+(-6x-9)+(-48x)+4*18x=0
Wy multiply elements
90x^2+(-6x-9)+(-48x)+72x=0
We get rid of parentheses
90x^2-6x-48x+72x-9=0
We add all the numbers together, and all the variables
90x^2+18x-9=0
a = 90; b = 18; c = -9;
Δ = b2-4ac
Δ = 182-4·90·(-9)
Δ = 3564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3564}=\sqrt{324*11}=\sqrt{324}*\sqrt{11}=18\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18\sqrt{11}}{2*90}=\frac{-18-18\sqrt{11}}{180} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18\sqrt{11}}{2*90}=\frac{-18+18\sqrt{11}}{180} $
| 4-2/3^x=x-6/5 | | 6x+1=2(2x+3) | | (2+3j)-(3-4j)=0 | | 6x+3=2x=15 | | 2(x+3)=16* | | 3(3x-2)=6x+12 | | 7y-8=13y | | 5x+2=10x–1 | | (1/2)x-27=2x | | 9x+1x=170 | | 3/4^x-2=1/3^x+3 | | 3x=-33-24 | | 2p-7=15 | | x+50=32 | | 99-2x=3x-6 | | x−43=167 | | 50–x=32 | | 1/2^x-1=5 | | 3(2y+1=5(y+2) | | 5x-6=3(x-8) | | 2p-5=7p+15 | | 3x+4/20=2/5 | | 4(q-3)=5q+3 | | 3(4×-5)=5(2x-5) | | S=2x^2-40x+400 | | 6x+9=-38-6x | | 3/4x-2=1/3x+3 | | 8x+2=4x+105)14x+4=5x+31 | | a*5+8=12 | | 5(g-3)+4(g-2)=13 | | 6x+3(3-2x)=12(2-x) | | (5g-3)-(4g-3)=12 |