(5x)+(5x)+(11x+3)+(11x+3)x=4

Simple and best practice solution for (5x)+(5x)+(11x+3)+(11x+3)x=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x)+(5x)+(11x+3)+(11x+3)x=4 equation:



(5x)+(5x)+(11x+3)+(11x+3)x=4
We move all terms to the left:
(5x)+(5x)+(11x+3)+(11x+3)x-(4)=0
We add all the numbers together, and all the variables
10x+(11x+3)+(11x+3)x-4=0
We multiply parentheses
11x^2+10x+(11x+3)+3x-4=0
We get rid of parentheses
11x^2+10x+11x+3x+3-4=0
We add all the numbers together, and all the variables
11x^2+24x-1=0
a = 11; b = 24; c = -1;
Δ = b2-4ac
Δ = 242-4·11·(-1)
Δ = 620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{620}=\sqrt{4*155}=\sqrt{4}*\sqrt{155}=2\sqrt{155}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{155}}{2*11}=\frac{-24-2\sqrt{155}}{22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{155}}{2*11}=\frac{-24+2\sqrt{155}}{22} $

See similar equations:

| -32;p=8;p=32 | | 250-x=175 | | 4x+2x+7=18 | | 1.4/56=2.4/x | | -4(z+11)=-24 | | (6y-14)=2y | | 12x+2x=10x+5x | | 14=44-2a | | n=–2,0,2 | | -4n+5=-4-5n | | 50x+12x+17=21x+15-32 | | 8(x-2)+13=8x-3 | | 12x+7+53=23x+5 | | .4(15p+6)=1.5+(4p+1.6) | | 3(2r+7)=15(r-4) | | 0+1x=12-2x | | 7(x-6)=147 | | 3h+9=-8h-33 | | 2(b+1)+4=3(2b–8)–16 | | 12d+34=9d-1 | | 5w-11=8w+10 | | 12x+-2x=10x-+8 | | 180=(5x+16) | | -4a+5+11=2a-8-6a+7 | | 3/5x+4/5=-1 | | 3,440.00x+140.00=2,000.00x+220.00 | | 6(13-5x)+15x=14(4x-12)-8 | | 180=(5x+15) | | 7x^2+20x=-12 | | (3x+1)+118+x=180 | | 3/5x-1=12 | | 9x+4+80+16x-4=180 |

Equations solver categories