(5p-5)(7p+6)=35p-5p-

Simple and best practice solution for (5p-5)(7p+6)=35p-5p- equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5p-5)(7p+6)=35p-5p- equation:



(5p-5)(7p+6)=35p-5p-
We move all terms to the left:
(5p-5)(7p+6)-(35p-5p-)=0
We add all the numbers together, and all the variables
(5p-5)(7p+6)-(+30p)=0
We get rid of parentheses
(5p-5)(7p+6)-30p=0
We multiply parentheses ..
(+35p^2+30p-35p-30)-30p=0
We get rid of parentheses
35p^2+30p-35p-30p-30=0
We add all the numbers together, and all the variables
35p^2-35p-30=0
a = 35; b = -35; c = -30;
Δ = b2-4ac
Δ = -352-4·35·(-30)
Δ = 5425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5425}=\sqrt{25*217}=\sqrt{25}*\sqrt{217}=5\sqrt{217}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5\sqrt{217}}{2*35}=\frac{35-5\sqrt{217}}{70} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5\sqrt{217}}{2*35}=\frac{35+5\sqrt{217}}{70} $

See similar equations:

| 18+9x-x=-2(9-4x) | | x/2x+x=18 | | 4-12x+2x=2(2-5x) | | 4x-7=3-4x | | ((3/4)x)=165 | | 7-6=3(2-2x) | | x/2+x=18 | | |5x+1|=|11-2x| | | 3x+2x+4-3=0 | | ((1/4)x+12)+((1/2)x+3)=180 | | 3u-78=2u | | 3x+14=168 | | x^+10x=9=0 | | 5+13y=63 | | 34=9x+2 | | 6x-1=2x^ | | 3x+35=2x+15 | | (3x-10)=(2x+3) | | 3+6y=1 | | 74=740/x | | (3x-10)=(1/4(8x+12)) | | 9.95+x=10.65;$0.70 | | 5x+7=6-3x | | (3x-10)=1⁄4(8x+12) | | -2x^=2-7x | | m=41 | | (2)=x2-3x | | (k+6)(k+6)=0 | | (3x-10)=1/4(8x+12) | | 8.44=10.98x-4.9x^{2} | | 2q-5=4 | | 3×-12-4x=4 |

Equations solver categories