(4/9)x=4/54

Simple and best practice solution for (4/9)x=4/54 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/9)x=4/54 equation:



(4/9)x=4/54
We move all terms to the left:
(4/9)x-(4/54)=0
Domain of the equation: 9)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+4/9)x-(+4/54)=0
We multiply parentheses
4x^2-(+4/54)=0
We get rid of parentheses
4x^2-4/54=0
We multiply all the terms by the denominator
4x^2*54-4=0
Wy multiply elements
216x^2-4=0
a = 216; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·216·(-4)
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{6}}{2*216}=\frac{0-24\sqrt{6}}{432} =-\frac{24\sqrt{6}}{432} =-\frac{\sqrt{6}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{6}}{2*216}=\frac{0+24\sqrt{6}}{432} =\frac{24\sqrt{6}}{432} =\frac{\sqrt{6}}{18} $

See similar equations:

| 4x+0.6=1/3 | | 72=-5x+3x+86 | | 18=15-3(6x+5 | | 50+50-25x2=+2 | | 3+2^7x=9 | | 22n+17(20-n)=400 | | 2(4x+8)=6x+10 | | 5x-23=12x+19 | | 4^(n-1)=48/n | | 4^(n-1)=48/3 | | x2+14=29 | | 0.0437*x=10 | | x^2+5.8x+8.41=0 | | 14/82=x/70 | | 1416=2v | | 3x-1(2-4x)x=5 | | 6x+2-6=50 | | 7n+5-3=51 | | x^2/3-60=40 | | 4x-6=-1/2x+3 | | 3x=(81) | | 3x-21=-x+11 | | 16(-3x-9)=12(-12+4x) | | 140=2x+23 | | 1000=(0.35(x+x/0.08)+0.65(1000+2x))/1.65 | | 1000=0.35(x+x/0.08)+0.65(1000+2x) | | 40n-5=-5-5 | | 4y+7=5y+6 | | -3(x)=9x^2-4 | | 12.8=u2 | | 8n-2(3n-3)=-2(-n-3 | | 8x+10=20x-4 |

Equations solver categories