(4/5)x+(1/7)=3

Simple and best practice solution for (4/5)x+(1/7)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/5)x+(1/7)=3 equation:



(4/5)x+(1/7)=3
We move all terms to the left:
(4/5)x+(1/7)-(3)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (4/5)x-3+(1/7)=0
We add all the numbers together, and all the variables
(+4/5)x-3+(+1/7)=0
We multiply parentheses
4x^2-3+(+1/7)=0
We get rid of parentheses
4x^2-3+1/7=0
We multiply all the terms by the denominator
4x^2*7+1-3*7=0
We add all the numbers together, and all the variables
4x^2*7-20=0
Wy multiply elements
28x^2-20=0
a = 28; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·28·(-20)
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{35}}{2*28}=\frac{0-8\sqrt{35}}{56} =-\frac{8\sqrt{35}}{56} =-\frac{\sqrt{35}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{35}}{2*28}=\frac{0+8\sqrt{35}}{56} =\frac{8\sqrt{35}}{56} =\frac{\sqrt{35}}{7} $

See similar equations:

| 8-4q=q+16 | | k+10=-10+3k | | 4a−2=3a−7 | | x^2-5x+24/5=0 | | 1/7v-1/2=-4/3 | | 10x-x^2=17 | | 2t+6t=-72 | | -3x-17=-9x-31 | | X2-x+55=x2+4x+5 | | 317.4-63.6=c | | x^2+17x-11=13x+10 | | x-4•3=63 | | 4(x=1)=2x+4 | | 3y-5=7(y+1) | | |x+4|=6 | | (1/3)k-2=-6 | | -2(1+2x)=-2x+3(3x+3) | | 1.5=0.25x^2+0.2x | | 86-(6x+9)=6(x+2)+x | | 10+0.8y=30 | | 1-16b+11b=-6b+20 | | 7(1-a)=45 | | -314=-10x-124 | | (N=3)2n+5-n | | x-4^3=63 | | x^2-6+9=25 | | x+20+x-26=132 | | x/18-27=16 | | 6(x-5)=-18 | | 10-0.8y=30 | | 10+(-1+p)=21 | | 2(4t+1)-11=t-(t+8) |

Equations solver categories