If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4/5)+(1/4)t=(3/5)
We move all terms to the left:
(4/5)+(1/4)t-((3/5))=0
Domain of the equation: 4)t!=0We add all the numbers together, and all the variables
t!=0/1
t!=0
t∈R
(+1/4)t+(+4/5)-((+3/5))=0
We multiply parentheses
t^2+(+4/5)-((+3/5))=0
We get rid of parentheses
t^2+4/5-((+3/5))=0
We calculate fractions
t^2=0
a = 1; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·1·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$t=\frac{-b}{2a}=\frac{0}{2}=0$
| 2x2+4x-1920=0 | | 255=3-7(6x-6) | | 20x+3=28x+2 | | 3(x-1.8)=2x+9 | | 42-x+x=180 | | -x+(3+x)=3 | | 6^x=15.36 | | 5(r-2)=10(r-1)-5r | | 3/4(v+12=3v-9 | | 20=8+4n | | x+25+x=180 | | 6+b=26 | | 3m+6=9-7m | | 9=z−22 | | 5(x-4)=5-(4x-29) | | 5n-4.5=3n-2.3 | | 2n−16=4 | | 2n−16=42 | | 8.95+15r=26.95 | | 2(n−8)=4 | | -(5/u-2)=4 | | 13x+22=109 | | 120=3x+5(1+4x) | | (5+2z)/3=3z-4 | | 4^((x^2)-20)=16^4x | | -x-148=140+7x | | -x-148=140 | | -2x-6x=6-7 | | 2/5x-8=2x-10 | | -14-6x=-4x+26 | | −2x−6x=6−17 | | -8x-64=3x=123 |