(3x-6)(3x-1)=(3x-1)(2x-4)

Simple and best practice solution for (3x-6)(3x-1)=(3x-1)(2x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-6)(3x-1)=(3x-1)(2x-4) equation:



(3x-6)(3x-1)=(3x-1)(2x-4)
We move all terms to the left:
(3x-6)(3x-1)-((3x-1)(2x-4))=0
We multiply parentheses ..
(+9x^2-3x-18x+6)-((3x-1)(2x-4))=0
We calculate terms in parentheses: -((3x-1)(2x-4)), so:
(3x-1)(2x-4)
We multiply parentheses ..
(+6x^2-12x-2x+4)
We get rid of parentheses
6x^2-12x-2x+4
We add all the numbers together, and all the variables
6x^2-14x+4
Back to the equation:
-(6x^2-14x+4)
We get rid of parentheses
9x^2-6x^2-3x-18x+14x+6-4=0
We add all the numbers together, and all the variables
3x^2-7x+2=0
a = 3; b = -7; c = +2;
Δ = b2-4ac
Δ = -72-4·3·2
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-5}{2*3}=\frac{2}{6} =1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+5}{2*3}=\frac{12}{6} =2 $

See similar equations:

| 4(2x+1)=6x+9 | | n+3=11-n | | 1/2(x-4)^+2=10 | | x÷16=7÷10 | | -7/4y=-28 | | x-7=3x=7 | | -7n+2+9n=2(n+2) | | 3(x)^3+8=0 | | 6(x-8)=6x+4* | | 7/9x=27 | | x-5+18x-125=14(2x-10)-9x | | 2(4x+9)/3=6 | | x(3x-3)=(3x+9)(x-8) | | 10=-5w-5 | | -3(x+4)=x+8 | | 8x-(4x+8)=2x-16 | | (2x+50)+3x=180° | | -2(x-2)=x+1 | | -5=y+5/6 | | 9/10a=1/10a+3/5 | | m^2-14m+45=50 | | 11/14n=22/49 | | (x-5)(5x+1)+(5x+1)(x+10)=0 | | 1/3(4x-5)=x | | x+0.18x=150 | | G(-2)=2x-9 | | 2(4y-5)=10 | | 1/3x=14/5 | | -4(x-2)/2=-x | | -7/9=w-6 | | 7q÷36=15 | | 159-w=257 |

Equations solver categories