(x-5)(5x+1)+(5x+1)(x+10)=0

Simple and best practice solution for (x-5)(5x+1)+(5x+1)(x+10)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)(5x+1)+(5x+1)(x+10)=0 equation:



(x-5)(5x+1)+(5x+1)(x+10)=0
We multiply parentheses ..
(+5x^2+x-25x-5)+(5x+1)(x+10)=0
We get rid of parentheses
5x^2+x-25x+(5x+1)(x+10)-5=0
We multiply parentheses ..
5x^2+(+5x^2+50x+x+10)+x-25x-5=0
We add all the numbers together, and all the variables
5x^2+(+5x^2+50x+x+10)-24x-5=0
We get rid of parentheses
5x^2+5x^2+50x+x-24x+10-5=0
We add all the numbers together, and all the variables
10x^2+27x+5=0
a = 10; b = 27; c = +5;
Δ = b2-4ac
Δ = 272-4·10·5
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-23}{2*10}=\frac{-50}{20} =-2+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+23}{2*10}=\frac{-4}{20} =-1/5 $

See similar equations:

| 1/3(4x-5)=x | | x+0.18x=150 | | G(-2)=2x-9 | | 2(4y-5)=10 | | 1/3x=14/5 | | -4(x-2)/2=-x | | -7/9=w-6 | | 7q÷36=15 | | 159-w=257 | | 3(3c+5)+1=2(c=20) | | 7x+2x+2x-9-7x=-14x | | -7=6u+39 | | 4=-2/3+x | | 5.8x-10=3.5x+17 | | 9x-7x-15-9x=6+4x-8x | | -6=x+2/3 | | 17-x2-18x=0 | | ^-t+2=12 | | -3/4+v=1/8 | | 5+20v=-2v+20v-19 | | -(2x+1)=3(2-7x) | | x/10-7=17/20 | | -18+16j=15j | | 2x+5x+10=180 | | 7/12t=3 | | 10n+3=5 | | 252=25x+3 | | -z-5=-19+z | | 35x^2-42x+12=0 | | 6+9u=-10-9+4u | | 3+27=5w | | 15x^2+7=23 |

Equations solver categories