(3x-1)*(2x+4)=(3x-1)*(x-2)

Simple and best practice solution for (3x-1)*(2x+4)=(3x-1)*(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-1)*(2x+4)=(3x-1)*(x-2) equation:



(3x-1)(2x+4)=(3x-1)(x-2)
We move all terms to the left:
(3x-1)(2x+4)-((3x-1)(x-2))=0
We multiply parentheses ..
(+6x^2+12x-2x-4)-((3x-1)(x-2))=0
We calculate terms in parentheses: -((3x-1)(x-2)), so:
(3x-1)(x-2)
We multiply parentheses ..
(+3x^2-6x-1x+2)
We get rid of parentheses
3x^2-6x-1x+2
We add all the numbers together, and all the variables
3x^2-7x+2
Back to the equation:
-(3x^2-7x+2)
We get rid of parentheses
6x^2-3x^2+12x-2x+7x-4-2=0
We add all the numbers together, and all the variables
3x^2+17x-6=0
a = 3; b = 17; c = -6;
Δ = b2-4ac
Δ = 172-4·3·(-6)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-19}{2*3}=\frac{-36}{6} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+19}{2*3}=\frac{2}{6} =1/3 $

See similar equations:

| 3x-34=10x-13 | | 3r+7=34r= | | 6y-2(3y+17)=10 | | 6m−3=10+6(2+m) | | -14+x/4=6 | | 11c-9=46 | | 10x+43=2x-29 | | 316-3x=400 | | 8x-45=4x-21 | | 1/2+3/2(x+1)-4=5 | | c^2=24c-5 | | 109+6x=29-4x | | x^2-21x=-57 | | a=3a+4+1 | | 3z-8=-7z+12 | | 4(3+2x)=7-2(3x+1) | | 0.2x+14=0.4x | | 1-(1÷4)x-2-(2÷3)x=19 | | 2x5+3=8x25 | | 4x-2+10-2x=5x-7 | | z2-12z=0 | | 49-y2=0 | | 5x(113x−16)=0 | | 6a2-12a=0 | | 1(x+16)=25 | | 9(x+11)-18=81 | | 7(x+9)+16=114 | | 7(x+4)+19=26 | | 0.03x-2=0.1+1.5 | | 6(x+11)-5=73 | | 3(x-12)-18=-24 | | 6(x-15)-17=-71 |

Equations solver categories