If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49-y2=0
We add all the numbers together, and all the variables
-1y^2+49=0
a = -1; b = 0; c = +49;
Δ = b2-4ac
Δ = 02-4·(-1)·49
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*-1}=\frac{-14}{-2} =+7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*-1}=\frac{14}{-2} =-7 $
| 5x(113x−16)=0 | | 6a2-12a=0 | | 1(x+16)=25 | | 9(x+11)-18=81 | | 7(x+9)+16=114 | | 7(x+4)+19=26 | | 0.03x-2=0.1+1.5 | | 6(x+11)-5=73 | | 3(x-12)-18=-24 | | 6(x-15)-17=-71 | | 4(x+6)-11=49 | | 6(x+10)+6=72 | | 9(x+7)+19=91 | | 1x+17=20 | | 2(x-8)-11=-9 | | 3(x+11)+19=76 | | 5(x+12)+13=28 | | 7(x+9)+12=82 | | 6(x+16)=78 | | 3(x+2)+15=9 | | 3(x+5)+18=42 | | 5(x+8)+11=41 | | 3(3k-7)=24 | | 6l-11=13 | | 10(x-12)-6=-166 | | 2(x-17)-19=-37 | | 2(x-4)-10=-24 | | 1(x+10)-10=10 | | (X-3)*(2x-7)=0 | | 5(x+8)+15=70 | | 5(x+16)=85 | | 10(x+17)+19=159 |