(3x-1)(x-3)-(x+4)(x-2)=3(x+4)

Simple and best practice solution for (3x-1)(x-3)-(x+4)(x-2)=3(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-1)(x-3)-(x+4)(x-2)=3(x+4) equation:



(3x-1)(x-3)-(x+4)(x-2)=3(x+4)
We move all terms to the left:
(3x-1)(x-3)-(x+4)(x-2)-(3(x+4))=0
We multiply parentheses ..
(+3x^2-9x-1x+3)-(x+4)(x-2)-(3(x+4))=0
We calculate terms in parentheses: -(3(x+4)), so:
3(x+4)
We multiply parentheses
3x+12
Back to the equation:
-(3x+12)
We get rid of parentheses
3x^2-9x-1x-(x+4)(x-2)-3x+3-12=0
We multiply parentheses ..
3x^2-(+x^2-2x+4x-8)-9x-1x-3x+3-12=0
We add all the numbers together, and all the variables
3x^2-(+x^2-2x+4x-8)-13x-9=0
We get rid of parentheses
3x^2-x^2+2x-4x-13x+8-9=0
We add all the numbers together, and all the variables
2x^2-15x-1=0
a = 2; b = -15; c = -1;
Δ = b2-4ac
Δ = -152-4·2·(-1)
Δ = 233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{233}}{2*2}=\frac{15-\sqrt{233}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{233}}{2*2}=\frac{15+\sqrt{233}}{4} $

See similar equations:

| n^2+n-4=20 | | (x+5)(x+2)-2(2x-3)=3x+2 | | x=0.07*0.11*0.11 | | (x+2)(x-8)+16=0 | | x=0.07x0.11x0.11 | | x/4x=7 | | -2x2=12 | | (3x+2)(x+2)=35 | | y+5=2y+7 | | -20=4/6x | | 3(8x-1)=45 | | 6(x+1)=x(1-x) | | 9y+8=4y | | 3z+8=3+2 | | 3(3x-5)=25 | | 2x2-18x+40=0 | | x2+4x−1=0 | | 3^2x-1=81 | | 8k-72=56 | | 8k-72=12 | | 8k-72=1 | | -20=46x | | 3(2x-5)+4(7-2x)=2x-3(2x-8) | | 6(x+2)+4(3–x)=30 | | 7p-6=71 | | (3x+1/x+4)-(x-2/x-3)=0 | | 4x+13-(2x)=19 | | 4.7m=-3m+4 | | x²+6x-27=0 | | x×x/2=18 | | x/12+8/12=1+3/4x | | 3(x-1)/4=-5/6(x-1/2) |

Equations solver categories